Simulation of Light Scattering and Propagation National Taiwan University
Course Overview
EACH LECTURE WILL BE TAILORED ACCORDING TO STUDENTS UNDERSTANDING. SUBJECTS TO BE COVERED FOR THIS COURSE ARE AS FOLLOWS: 1) THEORETICAL REVIEW OF ELECTROMAGNETISM 2) INTRODUCTION TO VARIOUS OPTICAL SIMULATION TECHNIQUES 3) MONTE CARLO TECHNIQUE 4) NUMERICAL SOLUTIONS OF MAXWELL'S EQUATIONS 5) APPLICATION OF THE TAYLOR’S EXPANSION 6) SCALAR WAVE EQUATION 7) THE FINITE-DIFFERENCE TIME-DOMAIN TECHNIQUE 8) PRAGMATIC SIMULATION OF OPTICAL PROBLEMS
Learning Achievement
Competence
Course prerequisites
PREREQUISITES: - GENERAL PHYSICS - CALCULUS - ELECTROMAGNETISM - BASIC PROGRAMMING SKILLS (MATLAB, FORTRAN, OR C/C++) GRADING FACTORS: ASSIGNMENTS: 35% MIDTERM EXAM: 25% FINAL EXAM: 30% PARTICIPATION IN CLASS : 10% GRADING FACTORS INCLUDE AN ASSESSMENT OF STUDENTS’ UNDERSTANDING OF THE COURSE CONTENT, PARTICIPATION IN CLASS, AND THEIR ABILITY IN COMPLETING THE ASSIGNMENTS. SIMULATION ASSIGNMENTS ARE DESIGNED TO PREPARE STUDENTS WITH HANDS-ON EXPERIENCE OF LIGHT PROPAGATION SIMULATION. STUDENTS ARE EXPECTED TO BECOME FAMILIAR WITH MATLAB. MIDTERM AND FINAL EXAMS WILL SERVE THE PURPOSE TO EVALUATE STUDENTS’ LEARNING PROGRESS. GRADES THUS ARE GIVEN BASED UPON STUDENTS’ ABILITY IN CARRYING OUT THE ASSIGNMENTS AND THEIR PERFORMANCE IN THE MIDTERM AND FINAL EXAMS.